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Abstract

The structure and function of a protein is based on its sequence of amino acids. At
a high temperature, a protein’s structure may change such that the protein does not
have the function it had at a lower temperature ("unfolded"). These temperatures,
referred to as melting temperatures, vary from protein to protein. In this paper,
we present three machine learning models for the prediction of protein melting
temperature based on their amino acid sequence. The code and data can be found
at https://github.com/Ruben-Krueger/cs_221_final_project.

1 Introduction

1.1 Background

Proteins are one of the four fundamental classes of macromolecules, with a variety of biological
functions. These functions arise from their structure, and this structure is based on the protein’s
sequence of amino acids. A protein is functional when it is “folded” and non-functional when
“unfolded.” Proteins can become unfolded when the temperature rises, and protein thermostability
is based on sequence (Ku et.al, 2009). The melting temperature of a protein is the temperature at
which half of the protein molecules are unfolded. Deriving the melting temperature of proteins is
of interest, particularly in drug development (Gorania et. al 2010). Current techniques, including
differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy, are
expensive (Gorania et. al 2010). A computational way to estimate this value would be instrumental
for numerous applications.

Krueger, Wolff, Mendoza

https://github.com/Ruben-Krueger/cs_221_final_project


1.2 Literature Review

Most machine learning research on proteins has been applied to predicting the 3D structure of
the protein. AlphaFold (Evans et al. 2018) in particular has accelerated the field’s progress in this
task.

Many research groups have approached the prediction of protein melting temperature as a classi-
fication problem. Wu et al. (2008) used a decision tree to classify proteins into three thermostability
classes, achieving an accuracy of 84%. Ku et al. (2009) built a protein melting temperature classifier
that differentiates between proteins made from hyperthermophilic microorganisms and those made
from mesophilic microorganisms. Additionally, Lin et al. (2010) used a support vector machine to
classify thermophillic proteins.

Pucci and Rooman (2010) used a dataset of 45 proteins to create a predictor of protein stability
curves using as input the three-dimensional protein structure and the host organism.

Gorania et al. (2010) compiled 230 proteins from existing studies to make their dataset and used
an Artificial Neural Network and an Adaptive Network-Fuzzy Inference System to predict a protein’s
melting temperature.

Our paper deviates from the available literature as we seek to predict a value for the melting
temperature, as opposed to a temperature class. Furthermore, we have not found literature in which
the authors used a Latent Dirichlet Allocation model in protein characteristic prediction or protein
engineering. We find our application to be novel, and potentially useful for uncovering explicit motifs
in the protein structure from sequence.

1.3 Task Definition

Given a protein’s sequence of amino acids, what is its melting temperature?

2 Infrastructure

2.1 Data Collection

Figure 1. A table of protein melting temperatures used in our dataset. We present this as an example
of the data we are scraping. This exact table can be found in the paper by Pucci, et. al. (2015) cited

below.

While there have been previous groups that have experimentally characterized melting tempera-
tures of proteins for their research, there is not one single, central database that matches a protein
with its melting temperature. For example, the Protein Data Bank (PDB) does not include this value
with their information about proteins. The Prokaryotic Growth Temperature database (PGTdb) was
an attempt from a previous research group to establish such a database, but it is currently offline
(Huang et al. 2004). Attempts to contact the researchers of this project were unsuccessful. Thus, for
our data set, we collected a list of 235 proteins with their name, PDB code, and melting temperature
from various academic papers on the subject.

2.2 Data Synthesis

From our dataset of real proteins, we derive artificial "mutants": proteins with a single amino
acid substitution (e.g., "A"→ "T") to augment our collected data of real proteins. We aim to improve
the robustness of our models. We generated 34,633 mutants.
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The melting temperature of the artificial mutants is concordant with the melting temperature
of the real protein from which it was derived. We assume that one amino acid substitution does
not cause a significant change in protein structure. This assumption is flawed; notably, addition of
amino acids such as cysteine or proline can have a large impact on protein folding, and thus the actual
melting temperature may be quite different. However, we accept this error as a consequence of the
difficulty in obtaining training data.

Montanucci, et. al. predicted thermostability changes to the protein resulting from multiple
mutations in the nucleic acid sequence. From their experimental dataset description, one notes that
even up to four mutations in amino acid sequence changes the temperature by less than 10 degrees
Celsius. For example, five amino acid changes to the protein FAOX changes the melting temperature
from 37 degrees Celsius to 45 degress Celsius. Nevertheless, the flaw in our assumption is also
noted, where, for example, one mutation to CbADH changes the melting temperature by 11.5 degrees
Celsius.

3 Approach

3.1 Baseline

Our first models are baseline models. These are simplistic models which give lower bounds on
the performance of our other models.

We implemented three baselines. The first baseline simply considered the length of the amino
acid. Using this as the only feature for linear regression, we report a value of r2 = −0.091. Indeed,
the value reported by r2 can be negative when the squared distances from a horizontal line through
the data exceed that of the squared distances from the given model to the actual data (GraphPad,
FAQ). We then tested a single feature that considers the counts of polar, nonpolar, and "special"
amino acids, and we report a value of r2 = 0.005. Finally, we had the most success by considering
groupings of amino acids. First, we considered the frequency of individual letters in the sequence
(e.g. an amino acid such as ’Q’) and observed r2 = −0.272. Then, we considered the frequency of
groupings of two (e.g. ’QR’, a bigram) and report r2 = 0.055. Finally, groupings of three letters
results in r2 = 0.017. Our baseline demonstrated that the length of a protein does not correlate
well to the melting temperature, which is consistent with previous research (Franzosa et al, 2010).
Other simple features also did not show a strong correlation as measured by the r2 loss. The strongest
correlation was polar, nonpolar, and "special" amino acid frequencies. We have chosen to pursue
three models that can extract features we otherwise would not have predicted or that can extrapolate
from the features we describe.

3.2 Oracle

An oracle is a model which provides an upperbound to the performance of any model on the task.
The performance of the oracle will be a benchmark for the other models to achieve. Often, an oracle
will "cheat" in some fashion (solve the task with additional information) to achieve performance better
than the baseline. For our task, the problem is intractable for a human observer without laboratory
equipment. Thus, implementing an oracle would be solving the original task.

3.3 Neural Network

3.3.1 Description

A neural network is a model consisting of three layers: an input layer, hidden layer(s), and an
output layer. The input layer is where the features of the data are inserted. The hidden layer(s) are
used to extract features. Each layer consists of "nodes" which emulate the functioning of biological
neural neurons.

3.3.2 Implementation

Overview. We used the Keras Sequential model for our neural network. Our neural network
consisted of an input layer, three hidden layers, and one output layer. Each hidden layer used the
Relu activation function and the Adam optimizer.
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The features of this model were the counts of the amino acids; the number of hydrophilic amino
acids; the number of hydrophobic amino acids; the number of glutamic acid and lysine amino acids
divided by the number of glutamine and histine amino acids (E +K)/(Q+H). The last ratio in
particular has been found by Wu et al. to be a ratio that is very indicative of a protein’s melting
temperature.

Each column in the data set was transformed to a Normal distribution with mean of 0 and
standard deviation of 1. Additionally, each hidden layer had the L2 regularization constant added.
This was done to prevent node weights from getting too large and preventing overfitting.

3.3.3 Evaluation Metrics

We evaluate the loss of our neural network with mean squared error. That is, given a prediction
ŷ and actual value y, we compute the error for our model over the testing data as

Loss(ytest, ypred) =
∑

yi∈Ttest

(ŷi − yi)
2.

We evaluate the error of the model, given a protein p with predicted melting temperature y and true
melting temperature ŷ, as

Error(p, y, ŷ) =
y − ŷ

y
.

Over 40 epochs, we trained the neural network with a batch size of 2000 proteins. Figure 2 summarizes
the loss of the model over the training set.

Figure 2. Neural network loss over the training set.

Now with a trained model, we tested the model with our testing set. Figure 3, for each protein in the
testing set, plots the actual melting temperature and the corresponding predicted value. The model,
using the above metric, had a mean squared error loss of 5334.7 over the testing set.
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Figure 3. Predicted melting temperature values versus actual.

From this, we can discern that the model has very little predictive power.

3.3.4 Error Analysis

Figure 4. The amino acid composition of proteins for which the model had an error less than 5%.

Figure 5. The amino acid composition of proteins for which the model had an error greater than 5%.

Figures 4 and 5 plot the amino acid compositions of proteins which the model had more than 5% and
less than 5% error. Visually and quantitatively, these two graphs are very similar. We can infer that
the model predicts poorly regardless of the amino acid composition of the protein. From this, we can
discern that it does not seem that the model performs poorly on proteins with some particular subset
of amino acid composition.

3.4 Case Study

We now consider two proteins from the testing set. The first, 1CSE, had less than 5% error from
our model. The second, 9RNT, had more than 5% error.

1CSE has a sequence which contains 37 polar and 33 nonpolar amino acids. 9RNT has a
sequence which contains 64 polar and 40 nonpolar amino acids. Thus, the model performed worse on
a protein that had more polar amino acids. This is most likely due to the fact that additional polar
amino acids can cause large changes in protein structure, thus affecting melting temperature in a
nonlinear fashion (Wu et al. 2009).

3.5 Regression Tree

3.5.1 Description

Regression trees are a type of decision tree where the output can take on continuous values.
Each level of the tree divides the data according to a specific feature until a threshold is reached or
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the data cannot be divided any further. The order of the features used for each level depends on the
minimization of an error function, prioritizing the features that provide the best performance in the
determination of the output.

3.5.2 Implementation

Overview. To train our tree, we used python’s scikit-learn decision tree regressor library. The
features used are extracted from our training set. At each level of the tree, the algorithm splits the
data according to a particular feature. We then use this tree to make predictions on our test set. The
return value for each input represents the predicted melting temperature of the protein sequence.

The features for this model were the same as the ones used in our neural network approach. This
includes counts of the amino acids; n-grams of different lengths; the number of hydrophilic and
hydrophobic amino acids; and the number of glutamic acid and lysine divided by the number of
glutamine and histine aminoacids (E+K)/(Q+H).

Training. We constructed two versions of our regressive tree. For the first version, we used only
235 real proteins with their actual melting temperature. For the second, we used the 34,633 synthetic
datapoints that we generated according to the procedure described above (See "Data Synthesis").

Figure 6. A subtree of our trained regressive tree.

3.5.3 Evaluation Metrics

We evaluate the accuracy of our regressive tree algorithm by comparing the mean squared error
of the output over our testing set and the actual values. We use the accuracy_score function of
python’s scikit-learn library. If the entire set of predicted outputs matches exactly the true set of
labels, the value for the accuracy is 1.0. Our algorithm trained on real data returns an accuracy of
0.0612 over our testing set, whereas the one trained in synthetic data returns a value of 0.035 over its
testing set. The following two graphs show the result of applying the algorithm to each dataset.

3.5.4 Error Analysis

Figure 7. Results of regression tree trained with real data.
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Figure 8. Results of regression tree trained with synthetic data.

Surprisingly, the tree trained on synthetic data performed at a much lower level than the one
based on real datapoints. We suspect that this might be due to the algorithm overfitting to the synthetic
data, since the synthetic datapoints are made to be very similar to their original counterparts.

3.5.5 Case Study

• Input: See synthetic protein #12 in test_synthetic_data_mutated.csv

• True Output: 324.15

• Predicted Output: 343.15

In this instance, the predicted value was grossly overestimated by the regression tree. In terms
of relevant features, protein #12 has a length of 414 aminoacids, its ratio (E+K)/(Q+H) is 1.25, 195 of
its aminoacids are polar, 165 nonpolar, 65 are labeled as special, and it had the largest amount of ’E’
aminoacids, with a count of 33. As mentioned previously, a large amount of polar amino acids can
cause large changes in protein structure and was most likely the factor of such a large discrepancy in
predicted and actual melting temperature (Wu et al. 2009).

3.6 Latent Dirichlet Allocation Model

3.6.1 Description

Latent Dirichlet allocation (LDA) is a method to extract topics from text. It returns groups of
words, or topics, to explain similar data (Ng, et. al. 2003). We first note that our input is fundamentally
text - a string of letters. We propose that there are certain topics, or patterns of amino acid sequences,
that appear frequently and characterize a certain range of melting temperatures. We consider that, for
example, a particular motif in the protein structure might not even have a name, but might influence
the melting temperature of the protein to some extent. Thus, we have implemented LDA to extract
these topics from our protein dataset.

3.6.2 Implementation

Overview. We extract topics from a training set. We then compare those topics to those extracted
from the test set. Then, we compare the topics from a test datapoint to those from our training set.
We use this comparison to determine the range of melting temperature. We output this range as a
final result.

Preparation. We separate our training data and our test data. We define the interval at which to
divide the entire range of our training data (e.g. every 15K over the range of 300K to 400K). This
determines the intervals over which we will produce topics (e.g. 300-344K). We combine all the
proteins in a single interval into one long string with spaces in between the individual amino acids.

Output. We output a range as described in the subsection that follows, and we set an upper limit for
the length of the range. This is necessary because if, for example, the range we output was 300-400K,
then we could achieve 100% accuracy, although this would be entirely useless.
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Figure 9. A graphic that helps explain how an LDA applies to our topic.

We use the LDA implementation from the gensim Python package.

3.6.3 Evaluation Metrics

Definitions. We define a "WIN" as a correct prediction such that the true Tm is within the range
predicted. A "LOSS" is an incorrect prediction such that the true Tm is not within the range predicted.
A "NONE LOSS" is where the model outputs nothing because none of the topics extracted from the
test datapoint match any of those extracted from training. This is beneficial because we can directly
point to our limited data as a reason for our inability to classify certain proteins.

Case Study. Here we report the results of one run of the LDA algorithm. Our pruned dataset was
229 proteins. We removed 6 outliers because these can result in inaccurate ranges when there is not
enough data for the given range (e.g. one protein in the 375-389K range). We trained on 184 proteins
and tested the algorithm on 45 proteins (≈ 1

5 of all of the data). The intervals for which we produced
topics were the following: 300-314, 315-329, 330-344, 345-359, 360-374, and 375-389. Our proteins
vary in range from 312.95 to 368.05. Our ranges were of length 15 (e.g. 330K to 344K). We extracted
15 topics per interval with 4 "words" per topic. Our algorithm correctly predicted the range for 11 of
the proteins, incorrectly predicted the range for 12 of the proteins, and returned a "NONE LOSS" for
22 of the proteins. Thus, our overall accuracy is 24.4% for this particular run; however, if we do not
include those for which there was not enough data (i.e. the NONE LOSS), then we had a prediction
accuracy of 47.8%. Because the LDA is a probabilistic algorithm, our results vary by run, even with
the same split of test and training data. This was a particularly good run.

3.6.4 Error Analysis

For our error analysis, we pruned a few more proteins and proceeded to classify our data into the
following intervals: 315-329, 330-344, 345-359, and 360-374. Here, we analyze our model’s accuracy
when predicting protein melting temperature for these intervals.

Synthetic Data versus Real Data Performance Because the LDA is a probabilistic algorithm, we
ran 20 trials of our LDA using the same test set and training set. We did this twice, once for the real
data and once for the synthetic data. We now report two confusion matrices for our classification
results.

Figure 10. Confusion matrix resulting from 20 trials of the LDA trained on real data and tested on
unseen real data.
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Range Frequency in Test Set

315-329 0.26
330-344 0.56
345-359 0.12
360-374 0.05

Table 1: Frequency of proteins in ranges of selected test set

Figure 11. Confusion matrix resulting from 20 trials of the LDA trained on synthetic data and tested
on unseen real data.

Training on synthetic data resulted in a prediction accuracy of 0.272 whereas the training on the real
data resulted in a prediction accuracy of 0.282, a negligible difference given the standard deviations.

We note that training on the synthetic data offered a smoothing effect on our results. For synthetic
data, the minimum prediction accuracy of one of the runs was 0.00 and the highest was 0.60, with a
standard deviation of 0.16. However, when training on real data, the minimum prediction accuracy
for one of the runs was 0.17 and the maximum was 0.41, with a standard deviation of 0.07. Thus, the
synthetic data likely exacerbated some of our issues pertaining to over-fitting for the training data.

Lastly, the NONE LOSS, where our algorithm cannot predict a range with any accuracy because it
has never see the input topics before, was much larger for the synthetic data than it was for the real
data (see the rightmost columns of Figure 10 and Figure 11). It is possible that incorrect topics were
learned for these ranges as a result of the mutations, and thus when presented with real topics in the
test set, the algorithm was unable to compare these to the mutated topics. Furthermore, it is also
possible that the algorithm was so overfit to our synthetic training data that it generalized poorly
compared to training on real data.

Bias Towards Smaller Ranges From Table 1, we see that our data has a large bias towards smaller
ranges. Of the four ranges, more than half of the data is in one particular range while only 5% is
within the highest range. This indicates that out of the 169 proteins we trained on, less than 10 were
in the "360-374" range. Thus, it is obvious why our model performed so poorly for the "360-374"
range.

Word Ordering The order of the letters in the array for the topic is important because the most
probable word for the given topic is first in the array. However, if we were only to assert that
two topics matched if they presented with the same ordering, then we would dramatically increase
our NONE LOSS because several proteins would likely not have matching topics. This could make
our model more accurate, but it would only make the model more useful if we had more data to
compensate for the stricter requirement.

Case Study on a Misclassification

1. True Output: 315-329
2. Predicted Output: 360-374
3. Matching Topic: [’V’, ’L’, ’A’, ’G’]

The LDA misclassified this protein as the highest range when, in fact, it came from the lowest range.
First, it matched this topic only because of our relaxation on word ordering. The learned topic from
the "360-374" range that it matched with was [’A’, ’G’, ’V’, ’L’]. Second, this particular topic was
only the third most probable topic out of 10 learned. Finally, it came quite close to matching with the
true range, which contained the following two similar topics: [’L’, ’A’, ’V’, ’T’] and [’L’, ’D’, ’A’,
’V’], which were first and third most probable for the true range (315-329), respectively.
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4 Discussions and Future Work

Here, we consider what future explorations would improve our findings.

More Data Primarily, we need more data, but as computer scientists and not experimentalists, we
will consider the approaches of our algorithms.

Better Methods for Nuances We will likely need better methods for more nuanced problems. A
simple neural network, even with a large amount of data, will likely incorrectly predict a protein’s
melting temperature if the protein has an obscure length, composition, and resulting structure.

Learning the Ranges The ranges we denoted for our Latent Dirichlet Allocation (LDA) model
were largely arbitrary. However, in protein structure, there perhaps are motifs, which are patterns
of protein structure, that result in a similar melting temperature. Perhaps demarcating the intervals
around these landmark motifs will improve the accuracy of the LDA. On this note, learning the
intervals might prove to be the best approach.

Improved Synthetic Data Our current synthetic dataset was likely too uniform and too large. With
the synthetic dataset, the LDA achieved approximately the same accuracy, but had a much larger
standard deviation. Our models would likely benefit if we applied a Gaussian distribution to the
lengths of our mutated proteins rather than maintaining the same lengths for all proteins; randomly
selected mutants to remove from the dataset; and had a heuristic that estimates the temperature change
resulting from a mutation.

5 Conclusion

Predicting protein melting temperature is, put simply, a difficult problem. Predicting a protein’s Tm

explicitly from sequence requires the prediction of a number of variables that grows exponentially
with protein length. Our models simplify the problem to a text-input and number-output task, and
achieve some results in doing so.

External Factors There are several external factors that influence the denaturation of a protein.
Salinity and pH are two examples. Each of the melting temperatures of the proteins in our dataset
were measured at a given pH, some at 5.5 and some at 7.0, for example. However, the melting
temperature of a protein is different at 5.5 than 7.0. Therefore, in order to build an accurate model, it
is likely necessary to normalize for these experimental conditions.

Regression versus Classification We first attempted to tackle the problem as a regression problem,
using a regression tree and a neural network. However, after running into a data roadblock, we
decided to relax the problem slightly by classifying proteins into temperature ranges rather than
report specific temperatures. For this, we used a Latent Dirichlet Allocation Model.

A New Approach Lack of data forced us to get creative. Our novel use of an LDA to classify
protein melting temperature is a unique way of approaching this difficult problem. By extracting
explicit topics from text, we hope that further research into using an LDA for this problem can reveal
if these topics correspond to structural motifs. We have not found literature on attempts to do this.

Issues Our models suffered from the typical struggles faced with little data. They do not generalize
nearly as well as they could, and they as a result, often offer similar predictions for inputs that have
wildly different outputs. The limiting factor is definitely data, and it is likely more productive if more
data collection is completed prior to development of the underlying algorithms.
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