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Abstract

My great-grandfather, after surviving World War 11, was
a victim of metastatic prostate cancer. Prostate cancer is
one of the most common types of cancer in men [1|]. Early
diagnosis is critical for effective treatment of the disease
[2]. However, misdiagnosis as prostate cancer can lead
to unnecessary treatment [5l]. The current standard for di-
agnosis is analysis of a tissue sample of the prostate. A
pathologist scores the tissue viewed under the microscope
on the Gleason grading system, the score of which is later
converted to a number 1-5 on the ISUP scale [13)]. The Glea-
son grading system is based on Gleason patterns, the recog-
nition of which machine learning algorithms have demon-
strated promise. Because even pathologists themselves of-
ten disagree on diagnoses for particular samples, machine
learning models could provide pathologists useful recom-
mendations in their endeavor to classify the samples, espe-
cially if such models offer an explanation for their choice
[4)]. The clinical assistance of such a model could lead to
fewer misdiagnoses by empowering the pathologist to make
a more informed decision.

1. Introduction

We consider employing computer vision techniques in
deep learning to determine the ISUP score for a prostate
tissue sample. In particular, we will use transfer learning
and fine-tuning on well-established models. Deep learning
applications in whole-slide image analysis is an emerging
application of deep learning. Recently, Caie et. al. pub-
lished an overview of this field, in which our problem fits
nicely because the dataset consists of whole-slide images
[14]. Stumpe et. al. have provided an in-depth explo-
ration of the application of deep learning to assist in Glea-
son scoring, which is precisely what we aim for here [20].
Other researchers have considered deep learning in histol-
ogy more broadly, which is applicable for when we fine-

tune our model using other datasets in histology [18]].

2. Problem Statement

We take as input a whole-slide image of a tissue sample
and output an ISUP score from 0 to 5. We might also output
a bounding box predicting the section of the cell most influ-
ential in its scoring, but it is not explored in the milestone.

3. Dataset

This project will use the dataset provided by the
Kaggle competition, "Prostate cANcer graDe Assessment
(PANDA) Challenge" [7]]. This dataset consists of 11,000
whole-slide images of biopsies from two separate centers.
According to the competition details, the dataset "...is the
largest public whole-slide dataset available" [8]. The im-
ages are not cropped to areas of interest; however, the com-
petition provides segmentation masks that indicate the areas
of the slide influential in determining its ISUP grade.

Figure 1. An example of the whole-slide image. Not
shown: a segmentation mask.



For each of the models that follow, the input image was
resized to 512x512 because the whole-slide images are pro-
vided in varying dimensions.

4. Technical Approach

We reduce the problem to a classification problem into
classes 0, 1, 2, 3, 4, and 5.

4.1. Baseline: NN

The baseline neural network consists of flattening the in-
put image, a fully connected layer with 1024 neurons, a
sigmoid activation function, followed by an output softmax
layer for classification.

4.2. Baseline: CNN

Our baseline CNN consists of 4 repetitions of a 2D con-
volution, batch normalization, ReLLU activation, and max
pooling, followed by a fully connected layer with a ReLU
activation, and finally another fully connected layer with a
softmax output.

4.3. Transfer Learning

Transfer learning was tested using four well-known
models: SqueezeNet, DenseNet-121, ResNet-50, and
Inception-v3. Each model choice was designed to give in-
sight into how to best model the problem. Encouraged by
the 0.44 quadratic weighted kappa score achieved by the
baseline CNN, transfer learning using SqueezeNet was im-
plemented with the intention of determining if a simpler,
more compact model is a sufficient starting point for the
task at-hand. DenseNet was tested to gain insight into the
performance differential resulting from shortening the con-
nections between the input and the final layers of the CNN
[23]. ResNet-50 was tested largely because it boasts well-
documented success when used as the initial pre-trained
model [24]]. Furthermore, we also tested Inception-v3 be-
cause Moulin et. al., who implemented deep learning for
histology-focused tasks, found the Inception model to out-
perform VGG-16 and ResNet-50 [[18].

Figure 2. A visualization of the DenseNet-121 model,
provided by PyTorch.com. [22]]

5. Preliminary Results
5.1. Evaluation

To preliminarily evaluate the models before examining
their performance on the validation set, their ability to learn
the training data is first determined. To do so, the metric
used is the accuracy per class. If the model is able to learn
the training data, it was then evaluated on the validation test.

To evaluate the model performance on the validation set,
the quadratic weighted kappa is used. This score measures
the agreement between the two outcomes. This is the metric
by which the entries in the competition will be judged. This
measure first calculates the squared difference between the
actual (7) and predicted values (j), divided by the square of
the total amount of values (/V) minus one.
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The quadratic weighted kappa value is then calculated
by summing the product of the weights (w;;) and number of
actual values that receive the predicted value (O;;) divided
by the product of w;; and the expected outcome calculated
under the assumption of zero correlation (E;;).
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This gives an intuitive result that uses the worst-case ran-

dom guessing as a baseline. The stronger the correlation,
the larger the « value.
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5.2. Baseline: NN

Neural networks are known to not perform well with im-
ages. For this particular class, the neural network performed
exceptionally poorly, scoring 0% accuracy on classes 1
through 5, and 100% accuracy on class 0, the most com-
mon class in the training data. After multiple epochs, the
network converged and was unable to improve. Further-
more, the model file consisted of 3GB of data, which is too
costly to run on a remote server, which is requied for the
competition. Thus, the model was not evaluated on the val-
idation set.

5.3. Baseline: CNN

Our baseline CNN was the simplest model that was able
to perform well and learn the training data. After 10 epochs,
it was able to achieve 99% or greater accuracy on each of
the six classes in the training set. It also provided a nice
baseline for validation set performance.



Pretrained Model \ Quadratic Weighted Kappa

DenseNet-121 0.61
ResNet-50 0.52
Inception v3 0.49
Custom CNN 0.44
SqueezeNet -

Table 1. Comparison of Model Performance

5.4. Transfer Learning

SqueezeNet was unable to train on the data and unable
to improve an extremely high loss. ResNet-50 and Incep-
tion v3 largely performed similarly, only slightly improv-
ing on our custom CNN. The largest gain in improvement
was achieved with the DenseNet-121 pretrained model. The
quadratic weighted kappa scores on the validation set are
listed in Table 1.

- New results - Fine Tuning - Dataset Augmentation -
Hyperparameter tuning - Class visualization methods

6. Further Work

The following sequence of steps describe the plan for
further work.

1. In the original assessment of the models, each model
was not subjected to the same training procedure. For
example, ResNet-50 was trained for 20 epochs and
DenseNet-121 was only trained for 5 epochs, and there
was little justification for this difference. The models
will be re-assessed using the practice of "early stop-
ping" as the stopping point for training, where the
model’s training procedure is halted at the point at
which the validation set performance worsens. The
best-performing model will be selected for further de-
velopment.

2. To alleviate the small-dataset issue, the selected model
will be fine-tuned on datasets in histology, preferably
in the oncology realm. The improvement as a result of
fine-tuning will be measured.

3. The model’s hyperparameters will then be iteratively
tuned on the validation set.

4. The model will be trained on augmented data and its
performance will be compared to such data.

5. Standard class visualization methods, such as a
saliency map, will be employed to inform us humans
what is most important in the model’s classification de-
cision.

6. If time permits, the model will use the provided seg-
mentation masks in the competition to learn to classify

multiple parts of the slide and output a bounding box
for each part. Ultimately, it is conceivable that such a
function would be a useful tool in a histologist’s toolset
in that it could enable the histologist to refocus on dif-
ferent areas that were perhaps overlooked.
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